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1. Introduction

Since the inception of Quantum Chromodynamics (QCD), progress in understanding its low

energy realm was hampered by the scarcity of adequate techniques for handling strongly

coupled Yang-Mills theories analytically. The discovery of the AdS/CFT correspondence [1,

2] has given promise for this situation to improve in a qualitative way. Indeed, the ensuing

dualities explicitly relate gauge theories at strong coupling to physically equivalent string

theories in ten-dimensional spacetimes which become tractable at least in the weak (string)

coupling and curvature limits. These dualities are manifestations of the holographic prin-

ciple [3] and have triggered an entirely new way of thinking about nonperturbative QCD.

The currently best understood dualities deal with supersymmetric and conformal gauge

theories, however, and so far the existence of an exact QCD dual and its explicit form have
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not been established ab initio. The pioneering applications to QCD and hadron physics1

therefore relied on a minimal infrared (IR) deformation of the anti-de Sitter (AdS) metric to

model confinement [5]. By restricting the fifth dimension to a compact interval, this “hard

IR wall” geometry softly breaks conformal symmetry in a way consistent with high-energy

QCD phenomenology (including counting rules for exclusive scattering amplitudes etc.) [5].

The extension of this minimal approach into a search program for the holographic dual of

QCD, guided by experimental information from the gauge theory side, is often referred to

as AdS/QCD.

At present, this program is being pursued along two complementary lines. The first

one is mostly bottom-up: it assumes a five-dimensional, local effective field theory in IR-

deformed AdS5 spacetime (and potentially in additional background fields of stringy origin)

to describe the gravity dual of QCD and attempts to constrain its form and parameters

by experimental information. For various works in this direction see [6 – 12] and references

therein. The main virtue of this approach lies in gathering and organizing information

on holographic QCD by using the wealth of accurate experimental data available on the

gauge theory side. The second type of approach is more directly guided by the underlying,

ten-dimensional brane anatomy of the gravity dual and attempts to maintain closer ties to

it.2 Up to now, however, this typically comes at the price of less direct relations to QCD.

For recent work along these lines see for example [14 – 16] and references therein.

Over the last years AdS/QCD has met with considerable success in describing hadron

properties, the heavy quark potential [17 – 19], vacuum condensates [20], QCD scattering

amplitudes at high energy [5, 15] etc. Many of these results were obtained on the basis

of the minimal hard wall implementation of IR effects. Although very useful in several

respects, the hard wall is also an oversimplification and has revealed shortcomings when

more complex and quantitative QCD properties are considered. The perhaps most impor-

tant limitation discovered so far is that it predicts quadratic instead of linear square-mass

trajectories both as a function of spin and radial excitation quantum numbers [7, 10, 21], in

contrast to experimental data and semiclassical string model arguments (for highly excited

states) which relate linear trajectories to linear quark confinement [22].

Different ways to overcome this problem in the meson sector have recently been pro-

posed in refs. [11, 19, 23]. As a result, linear Regge trajectories M2 ∝ J for spin-J excita-

tions or the analogous radial excitation trajectories M2 ∝ N of mesons could be reproduced

by different holographic models. Although the baryon sector [7, 24, 25] exhibits similarly

pronounced empirical trajectories of the above type [26], however, a dual description for

them has not yet been found. Our primary goals in the present paper will therefore be to

understand how linear baryon trajectories can arise in the AdS/QCD framework, and to

establish dual descriptions for additional spectral signatures of linear confinement.

To this end, we will focus on another striking and systematic feature in the light hadron

1Applications to remoter “cousins” of QCD, and in particular to their glueball spectrum, have a longer

history. See for example refs. [4].
2At present there is not enough calculational control over string theory in curved spacetimes to allow

for a strict top-down approach. Nevertheless, on the maximally symmetric AdS5 × S5 a complete solution

of the world-sheet string theory may ultimately become feasible even in the high-curvature regime [13].
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spectrum, namely the combined linear square-mass trajectories

M2 = M2
0 + W (N + L) (1.1)

of Regge type on which radial (N) and orbital angular momentum (L) excitations join.

The trajectory structure (1.1) is experimentally well established for both the light meson

and baryon resonances. Two fits to the meson data yield mutually consistent mean slopes

W = 1.25 ± 0.15 GeV2 [27] and 1.14 ± 0.013 GeV2 [28], respectively. The fit to the light

baryon resonances (i.e. to those consisting of up, down and strange quarks) results in the

somewhat smaller but still compatible slope W = 1.081 ± 0.035 GeV2 [26]. Hence the

value W ∼ 1.1 GeV2 is approximately universal3 for all trajectories [29]. The ground state

masses M0, on the other hand, are channel dependent.

Our work will rely on the dual representation of hadronic states with higher intrinsic

angular momenta by metric fluctuations [7, 16, 21] which suggests itself for our purposes

because it provides direct access to orbital excitations. The main strategy will be to devise

and apply a method for deriving IR deformed gravity duals which incorporate the exper-

imental information contained in the hadron trajectories (1.1). After a brief summary

of pertinent facts and results from AdS/QCD and the hard-wall metric in section 2, we

set out heuristically in section 3 by determining a minimal modification of the AdS mode

dynamics which generates the linear trajectories (1.1) in both meson and baryon spec-

tra. Subsequently, we explicitly construct the IR deformations of AdS5 which encode the

same dynamics, by deriving and solving differential equations for the conformal symmetry

breaking part of the warp factor in section 4. Several new features of the resulting gravity

background are discussed in section 5. In section 6 we determine the value of the confor-

mal breaking scale and compare the results of our holographic description to experimental

data. In section 7, finally, we conclude with a summary of our findings and mention a few

avenues for future improvements and applications.

2. AdS/CFT correspondence and hadron spectrum

The gauge/string duality [1, 2] maps type IIB string theories in curved, ten-dimensional

spacetimes into gauges theories which live on the (flat) 3+1 dimensional boundaries. For

an UV-conformal gauge theory like QCD, the dual string spacetime is the product of a five-

dimensional non-compact part which asymptotically (i.e. close to the boundary) approaches

the anti-de Sitter space AdS5 (R) of curvature radius R, and a five-dimensional compact

Einstein space X5 (where X5 = S5 (R) for the maximally supersymmetric gauge theory)

with the same intrinsic size scale. The line element therefore takes the form [5]

ds2 = e2A(z) R
2

z2

(

ηµνdxµdxν − dz2
)

+ R2ds2
X5

(2.1)

(in conformal Poincaré coordinates) where ηµν is the four-dimensional Minkowski metric.

Since A 6= 0 breaks conformal invariance explicitly, one has to require A(z) → 0 as z → 0

3This may be an indication for the conformal symmetry breaking scale ∝ ΛQCD to be approximately

hadron independent in the light flavor sector, as noted for orbital excitations in ref. [7].
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in order to reproduce the conformal behavior of asymptotically free gauge theories at high

energies. The string modes4 φi (x, z) = e−iPixfi (z) dual to physical states of the gauge

theory are particular solutions of the wave equations5 in the geometry (2.1) and fluctuations

around it, and potentially in additional background fields of stringy origin [2].

Casting these wave equations into the equivalent form of Sturm-Liouville type eigen-

value problems, one finds

[

−∂2
z + VM (z)

]

ϕ (z) = M2
Mϕ (z) (2.2)

for the normalizable string modes ϕ (z) = g (z) fM (z) dual to spin-0 (M = S) and spin-1

(M = V ) mesons as well as from the iterated Dirac and Rarita-Schwinger equations

[

−∂2
z + VB,± (z)

]

ψ± (z) = M2
Bψ± (z) (2.3)

for the string modes ψ± (z) = h (z) fB,± (z) dual to spin-1/2 and 3/2 baryons (where ±
denote the two chiralities of the fermions with iγ5ψ± = ±ψ±) [7]. The potentials VM,B

contain all relevant information on the string mode masses and the background metric (2.1)

which also determines the functions g (z) , h (z) introduced above. The eigenvalues M2
M,B

constitute the mass spectrum of the four-dimensional gauge theory on the AdS boundary.

The boundary conditions for the eigensolutions ϕ and ψ± are supplied by specifying the

corresponding gauge theory operator according to the AdS/CFT correspondence [2] (cf.

eq. (2.4)) and by the requirement of normalizability (and minimal string action in case of

ambiguities) of the eigenmodes. In some cases a further, less well determined boundary

condition is imposed in the infrared, at z = zm, in order to break conformal symmetry.

The AdS/CFT correspondence establishes the link between the string mode solutions

of eqs. (2.2), (2.3) and physical states on the gauge theory side by prescribing an UV (i.e.

z → 0) boundary condition for the solutions fi (z) of the five-dimensional field equations [2].

More specifically, for the dual of states |i〉 with four-dimensional spin 0 one has to select

the solution which behaves as fi (z)
z→0−→ z∆i where ∆i is the conformal dimension of the

lowest-dimensional gauge theory operator which creates the state |i〉. The wave functions

of states with four-dimensional spin σi acquire an extra boost factor z−σi , so that the

boundary condition generalizes to

fi (z)
z→0−→ zτi , τi = ∆i − σi (2.4)

where the scaling dimension ∆i of the gauge-invariant operator is replaced by its twist

τi [5]. The lightest string modes are then associated with the leading twist operators,

and therefore with the valence quark content of the low-spin (i.e. spin 0, 1/2, 1, and 3/2)

hadron states [7, 21]. The duals of their orbital excitations (which have no counterparts in

the supergravity spectra) and hence of higher-spin hadrons are identified with fluctuations

about the AdS background [7, 16].

4The dependence on the four dimensions x and on the fifth dimension z factorizes at least in the

asymptotic AdS region.
5The Klein-Gordon, Dirac and Rarita-Schwinger equations on AdS5 are discussed e.g. in refs. [30, 31].

– 4 –



J
H
E
P
0
7
(
2
0
0
7
)
0
7
7

The leading-twist interpolators contain the minimal number of quark fields q necessary

to determine the valence Fock states of the hadrons. Their intrinsic orbital angular mo-

mentum L is created by symmetrized (traceless) products of covariant derivatives Dℓ. This

results in the operators OM,τ̄=L+2 = q̄ΓD{ℓ1 . . . Dℓm}q with Γ = 1, γ5, γµ for scalar, pseu-

doscalar and vector mesons, and OB,τ̄=L+3 = qD{ℓ1 . . . Dℓq
qDℓq+1

. . . Dℓm}q corresponding

to spin-1/2 (or 3/2) baryons, with L =
∑

i ℓi. The boundary condition (2.4) is imposed on

the solutions by setting the values of the five-dimensional masses m5,H (which determine

the small-z behavior) according to the twist dimension τ̄ of the hadron interpolator to

which they are dual [2, 5, 21], i.e.

m5,HR →











√

τ̄(τ̄ − d) for spin-0 mesons,
√

τ̄(τ̄ − d) + d − 1 for vector mesons,

τ̄ − 2 for baryons,

(2.5)

where d is the dimension of the boundary spacetime. The twist dimension of the interpo-

lating operators thereby enters the field equations and the potentials VM,B.

As outlined above, the duality of string modes to hadrons is based on their associa-

tion with the lowest-dimensional, gauge-invariant QCD interpolators of matching quantum

numbers. Hence this identification is incomplete as long as fundamental quark flavor and

chiral symmetry are not properly accounted for. In the gravity dual, fundamental flavor

arises from open string sectors with the strings ending on added D-brane stacks [32]. This

mechanism has an effective bulk description in terms of chiral gauge symmetries [8, 9]

whose implementation into our framework will be left to future work.

Nevertheless, a few comments on these issues and their impact especially on the baryon

sector may be useful already at the present stage. The simplest and currently most popular

top-down approach to quark flavor in the meson sector introduces a D7-brane stack into

(potentially deformed) AdS, with open strings stretching between the D7- and D3-branes

and with the duals of flavored mesons living on their intersection [32 – 34]. Baryons require

an additional D5-brane (wrapped around a compact part of the ten-dimensional space)

which contains baryonic vertices [35] whose attached strings pick up flavor by ending on

the D7-branes as well [33].

This construction is difficult to handle explicitly, however, and the simpler propagation

of fermionic fluctuations on the D3/D7 intersection without the D5-brane was therefore re-

cently studied as a preparatory step [31]. The resulting modes are dual to the superpartners

of the mesons investigated in ref. [33], i.e. they correspond to fermionic bound states of

fundamental scalars (squarks) and fundamental as well as adjoint spinors. These modes

are solutions of Dirac equations similar to the one used in our framework but fall into

degenerate (N = 2) supermultiplets with their mesonic partners.

Although bottom-up duals of baryons (with the correct O(Nc) scaling behavior of their

masses) obey Dirac equations as well [31, 36], they differ from the above “mesinos” in their

assignment to gauge-theory operators. Consequently they are subject to other AdS/CFT

boundary conditions and generate different mass spectra, as expected on physical grounds.

Such bottom-up descriptions of baryon duals were considered in ref. [36], on which we

partially rely here, and also integrated [25] into the approach of ref. [8].
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Another interesting dual representation of baryons has recently emerged from a D4/D8-

brane construction for fundamental flavor and chiral symmetry [24]. This approach gen-

erates a Chern-Simons gauge theory in the bulk whose instantons are dual to solitonic

baryons of Skyrme type [37], i.e. to collective excitations of the meson fields which carry

topological baryon number and have masses of O(Nc) as well. Since low-energy properties

of Skymions can be described by Dirac fields (as they appear e.g. in chiral perturbation

theory [38]), this approach to baryon duals may in fact be complimentary to those of

refs. [25, 31, 36] outlined above.

The conformal potentials induced by the pure AdS5 metric6 (i.e. by eq. (2.1) with

A ≡ 0) are proportional to 1/z2:

V
(AdS)
M (z) =

[

15

4
− (d − 1) δM,V + m2

5,MR2

]

1

z2
, (2.6)

V
(AdS)
B,± (z) = m5,BR [m5,BR ∓ 1]

1

z2
. (2.7)

Hence the normalizable eigensolutions of eqs. (2.2) and (2.3) are Bessel functions whose

order and eigenvalues depend on the boundary conditions for the solutions fi (z) of the field

equations (cf. ref. [7]). The conformal invariance inherited from the AdS metric, however,

prevents these potentials from carrying direct information on IR effects of QCD.

The simplest way to approximately implement such IR effects, and in particular con-

finement, is to impose a Dirichlet boundary condition on the string modes at a finite IR

scale zm. This approach is prevalent among current bottom-up models and amounts to a

sudden onset of conformal symmetry breaking by a “hard-wall” horizon of the metric at

the IR brane [5], i.e.

e2Ahw(z) = θ (zm − z) ,

zm = Λ−1
QCD, (2.8)

and reduces the five-dimensional, noncompact space to an AdS5 slice. Even this mini-

mal implementation of non-conformal IR effects into approximate QCD duals (with only

one free parameter related to ΛQCD) can already predict a remarkable amount of hadron

physics, as outlined in the introduction. The investigation of hadron spectra and wave

functions in the approach of refs. [7, 21], in particular, gave a good overall account of the

angular momentum excitation spectra for both mesons and baryons.

In view of its simplicity, however, it is not surprising that the hard wall confinement

also reveals shortcomings. In particular, it predicts the square masses of radially and

orbitally excited hadrons to grow quadratically with N and L [7, 10], in conflict with the

6The modes dual to baryons originate from the ten-dimensional Dirac equation. Hence the nonvanishing

eigenvalue of the lowest-lying Kaluza-Klein (KK) mode of the Dirac operator on the compact space X5 [39]

adds to the five-dimensional mode mass m5,B (cf. e.g. ref. [7]). Since the AdS/CFT boundary conditions

replace the whole mass term by a function of the twist dimension of the gauge theory operator to be sourced,

however, the KK eigenvalue will not appear explicitly in the final expressions and has already been absorbed

into m5,B .
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linear Regge-type trajectories found experimentally7 and expected from the semiclassical

treatment of simple, relativistic string models [22]. While more detailed implementations

of conformal symmetry breaking were able to resolve this problem in the meson sector [11,

19, 23], linear baryon trajectories have so far not been obtained from a gravity dual.

As mentioned in the introduction, this provides part of our motivation to search for a

holographic representation which reproduces linear trajectories in the baryon sector as

well. (Note, incidentally, that the approach of ref. [11], at least in its simplest form where

a dilaton Φ (z) ∝ z2 is solely responsible for conformal symmetry breaking, will not lead

to linear trajectories in the baryon sector since the dilaton interaction can be factored out

of the Dirac equation and hence does not affect the baryon spectrum.)

3. Linear trajectories of radially and orbitally excited hadrons from AdS

type potentials

We are now going to develop a gravity dual which manifests soft conformal symmetry

breaking directly in the potentials and is capable of generating linear trajectories in both

meson and baryon spectra. To this end, we find in the present section suitable potentials

heuristically and show that they indeed reproduce the trajectories (1.1). In the subsequent

section 4 we then construct the IR deformations of the metric (2.1) which encode them

holographically.

A natural guess for the z dependence of potentials V
(LT)
M,B which are able to generate

the linear trajectorial (LT) structure (1.1) is that it should be of oscillator type in the

infrared (i.e. quadratically rising with z for z → ∞). The more challenging question is

how to realize this behavior in a universal way, i.e. on the basis of just one a priori free

mass scale λ and such that the same slope W and N + L dependence emerges in both

meson and baryon channels. It turns out that this can be achieved at the level of the

twist dimensions which enter the five-dimensional mass terms according to eq. (2.5) after

imposing the AdS/CFT boundary conditions (2.4). Indeed, all the necessary information

on conformal symmetry breaking can be implemented into the AdS5 potentials (2.6), (2.7)

by replacing

τ̄i → τ̄i + λ2z2. (3.1)

(The hard wall restriction (2.8) of the AdS space becomes obsolete.) The heuristic rule (3.1)

implies that the product of the five-dimensional masses mi and the square root a(z) = R/z

of the AdS warp factor grow linearly with z for z → ∞, thus foreshadowing the linear

trajectories (1.1) for both mesons and baryons. The role of the hadron-independent mass

scale λ will become more explicit below and in section 6 where we relate it to the trajectory

slope W and to the QCD scale.

As expected from soft conformal symmetry breaking, the replacement (3.1) does affect

neither the z → 0 behavior of the field equations nor that of their solutions. Both the

7In the hard wall model the first radial excitations of light mesons and the nucleon, identified by a node

in the string mode, appear at masses of about 1.8 GeV and 1.85 GeV, respectively [7], and are therefore

difficult to reconcile with the experimental π(1300), ρ(1450) and Roper N(1440)P11 resonances. These

shortcomings are suspected to be artifacts of the hard wall metric as well [7].
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conformal symmetry on the UV brane and the z → 0 boundary conditions (2.4) from the

AdS/CFT dictionary are therefore preserved. As a consequence of the above procedure,

the mass terms in the pure AdS5 potentials (2.6), (2.7) carry all information not only on

the twist dimension (and thus orbital excitation level) of the dual QCD operators but also

on the deviations from conformal behavior in the infrared. The underlying physical picture

will be discussed in section 5.

Recalling the expression τ̄M = L + 2 for the twist dimension of the meson interpola-

tors from section 2 and making use of the replacement (3.1) then turns the mesonic AdS

potential (2.6) into

V
(LT)
M (z) =

[

(

λ2z2 + L
)2 − 1

4

]

1

z2
(3.2)

(which holds for both spin 0 and 1) while the AdS potential (2.7), associated with the

baryon interpolator of twist dimension τ̄B = L + 3, becomes

V
(LT)
B,± (z) =

{

(L + 1) (L + 1 ∓ 1) + [2 (L + 1) ± 1]λ2z2 + λ4z4
} 1

z2
. (3.3)

The normalizable solutions of the corresponding eigenvalue problems (2.2) and (2.3) can

be found analytically. For the mesons one obtains

ϕN,L(z) = NM ;L,N (λz)L+1/2 e−λ2z2/2 L
(L)
N

(

λ2z2
)

(3.4)

where the L
(α)
N are generalized Laguerre polynomials [40] and NH;L,N are normalization

constants. For the (spin 1/2 and 3/2) baryons one similarly finds

ψN,L,+(z) = NB+;L,N (λz)L+1 e−λ2z2/2 L
(L+1/2)
N

(

λ2z2
)

, (3.5)

ψN,L,−(z) = NB−;L,N (λz)L+2 e−λ2z2/2 L
(L+3/2)
N

(

λ2z2
)

. (3.6)

Note that all eigenfunctions have appreciable support only over short distances, in the

small region z .
√

2λ−1 ≃ Λ−1
QCD (cf. section 6) close to the UV brane, which is an

expected consequence of confinement.

The corresponding eigenvalues

M2
M = 4λ2

(

N + L +
1

2

)

, (3.7)

M2
B = 4λ2

(

N + L +
3

2

)

(3.8)

show that the square masses of both mesons and baryons are indeed organized into the

observed N + L trajectories. Moreover, the spectra (3.7) and (3.8) predict the universal

slope

W = 4λ2 (3.9)

for both meson and baryon trajectories in terms of the IR scale λ. They also exhibit a

mass gap (of order
√

W ), another hallmark of confining gauge theories, and the intercepts

– 8 –
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M2
i,0 (cf. eq. (1.1)) relate the slope of the trajectories in a new way to their ground state

masses,

M2
M,0 =

W

2
, (3.10)

M2
B,0 =

3W

2
. (3.11)

The quantitative implications of these relations will be discussed in section 6.

4. Derivation of the equivalent IR deformations of AdS5

Although the existence of potentials (3.2) and (3.3) which generate linear trajectories of the

type (1.1) is encouraging, we have not yet provided any dynamical justification for them.

Indeed, for the spectra (3.7), (3.8) to be the outcome of a dual gauge theory, and for the

hadronic quantum numbers to be associated with the correct interpolating operators, one

has to show that they emerge from stringy fluctuations in a bulk gravity background. In the

present section we are going to establish this missing link by constructing the corresponding

background metric explicitly.

Of course, a priori the existence of such a bulk geometry is far from guaranteed, given

the quasi ad-hoc nature of the heuristic rule (3.1) which we used to find the potentials in the

first place. Moreover, it will prove sufficient to consider just the minimal set of background

fields,8 consisting of the metric only. In fact, we will show that even the simplest type of IR

modifications of the AdS5 metric, due to a non-conformal warp factor e2A(z) as anticipated

in eq. (2.1), can generate the potentials (3.2), (3.3). The success of this minimal approach

can be at least partially understood by noting that the potentials contain effects of an order

of magnitude which should arise from leading-order contributions to the effective gravity

action, i.e. from the metric. Higher-order contributions due to dimensionful background

fields (as e.g. the dilaton), in contrast, would be suppressed by potentially large mass scales.

In order to prove the above assertions and to construct the non-conformal warp factor,

we first obtain the five-dimensional field equations for string modes of the form φ (x, z) =

fS (z) e−iPx (spin 0) and Vz (x, z) = fV (z) εze
−iPx (spin 1) which are dual to mesons and

propagate in the background of the metric (2.1) with an a priori unspecified warp function

A (z). The ensuing bulk equations for the z dependent part of the string modes are

[

∂2
z + 3

(

A′ − 1

z

)

∂z −
(

m5,SR
eA

z

)2

+ M2

]

fS (z) = 0 (4.1)

with A′ ≡ ∂zA and the four-dimensional invariant square mass M2 = P 2, as well as

[

∂2
z + 3

(

A′ − 1

z

)

∂z + 3

(

A′′ +
1

z2

)

−
(

m5,V R
eA

z

)2

+ M2

]

fV (z) = 0. (4.2)

8An effective z dependence of the dual string mode masses may of course also arise from additional

background fields, as for example from a Yukawa-coupled Higgs field [41].
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The string modes dual to baryons can be decomposed into left- and right-handed compo-

nents,

Ψ(x, z) =

[

1 + γ5

2
f+(z) +

1 − γ5

2
f−(z)

]

Ψ(4)(x), (4.3)

where Ψ(4)(x) satisfies the Dirac equation (iγµ∂µ−M)Ψ(4)(x) = 0 on the four-dimensional

(Minkowski) boundary spacetime. As a consequence, the iterated five-dimensional Dirac

equation for Ψ reduces to

[

∂2
z + 4

(

A′ − 1

z

)

∂z + 2

(

A′′ +
1

z2

)

+ 4

(

A′ − 1

z

)2

−
(

m5,BR
eA

z

)2

∓ m5,BR
eA

z

(

A′ − 1

z

)

+ M2

]

f± (z) = 0 (4.4)

for the right and left handed modes with chiralities iγ5f± = ±f±.

These equations can be translated into the equivalent form of Schrödinger-type eigen-

value problems (2.2) and (2.3) for ϕ (z) and ψ± (z) by writing fS,V (z) =
(

λze−A
)3/2

ϕ (z)

and f± (z) =
(

λze−A
)2

ψ± (z) which eliminates the first-derivative terms. The correspond-

ing generalizations of the AdS5 potentials (2.6), (2.7) are then read off from the eigenvalue

equations as

VS (z) =
3

2

[

A′′ +
3

2
A′2 − 3

A′

z
+

5

2

1

z2

]

+ m2
5,SR2 e2A

z2
, (4.5)

VV (z) =
3

2

[

−A′′ +
3

2
A′2 − 3

A′

z
+

1

2

1

z2

]

+ m2
5,V R2 e2A

z2
(4.6)

and

VB,± (z) = m5,BR
eA

z

[

±
(

A′ − 1

z

)

+ m5,BR
eA

z

]

. (4.7)

The pure AdS5 potentials are contained in these expressions for A ≡ 0. The AdS/CFT

boundary condition, which relates the eigensolutions to the dual meson (baryon) operators

of twist dimension τ̄M = L + 2 (τ̄B = L + 3), is imposed by adjusting the mass terms,

m2
5,SR2 = τ̄M (τ̄M − 4) = L2 − 4, (4.8)

m2
5,V R2 = τ̄M (τ̄M − 4) + 3 = L2 − 1, (4.9)

m5,BR = τ̄B − 2 = L + 1, (4.10)

as outlined above. Equating the general potentials (4.5) - (4.7) to their heuristic counter-

parts (3.2), (3.3) leaves us with differential equations for the corresponding warp functions.

Their solutions (subject to appropriate boundary conditions), finally, determine the equiv-

alent background metric of the form (2.1).

As already mentioned, it is a priori uncertain whether there exists an approximate

gravity dual whose IR deformation can reproduce a given five-dimensional potential and

spectrum, simply because it may not result from a boundary gauge theory. In the above
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approach this is reflected in the fact that the nonlinear, inhomogeneous differential equa-

tions for A (z) may not have physically acceptable solutions. Our next task is therefore to

construct and analyze the solution spaces of these differential equations for the heuristic

potentials (3.2), (3.3).

4.1 Baryon sector

We begin our discussion in the baryon sector where the equation for A is of first order and

hence has less and generally simpler solutions. Equating the potential (3.3), whose repre-

sentation in terms of the background geometry we wish to construct, to the potential (4.7)

for general A results in the nonlinear, inhomogeneous differential equation

±
(

zA′ − 1
)

+ leA −
[

l (l ∓ 1) + (2l ± 1) λ2z2 + λ4z4
] (

leA
)−1

= 0 (4.11)

of first order (where l ≡ L + 1 and ± refers to the two baryon chiralities) whose solution

determines the non-conformal part exp [2AB (z)] of the equivalent warp factor.

Remarkably, the exact (and essentially unique) solution of eq. (4.11) subject to the

conformal boundary condition AB (0) = 0 can be found analytically and turns out to be

AB (z) = ln

(

1 +
λ2z2

L + 1

)

. (4.12)

Note that the same solution holds for both baryon chiralities. The leading contribution to

the non-conformal part of the warp factor at small z2 ≪ λ−2 is therefore

e2AB = e
2

L+1
λ2z2+O(λ4z4) (4.13)

which has the form of the analogous warp factor exp
(

cz2/2
)

used in refs. [19, 42] (together

with a constant dilaton) to obtain a linear quark potential and a linear (mesonic) Regge

trajectory.

4.2 Scalar meson sector

In the following we are going through the analogous construction for AS in the spin-0 meson

sector, which will turn out to be more multi-faceted. Equating the meson potential (3.2) to

its general-A counterpart (4.5) produces again a nonlinear, inhomogeneous equation, but

for AS it is of second order:

z2A′′ +
3

2

(

zA′
)2 − 3zA′ +

2

3

(

L2 − 4
) (

e2A − 1
)

− 2

3
λ2z2

(

λ2z2 + 2L
)

= 0. (4.14)

In addition to AS (0) = 0, its solutions require a second boundary condition which as of

yet remains unspecified and will be determined below. This added freedom provides one of

the reasons for the solution space in the meson sector to be larger and more diverse than

in the baryon sector.

In addition, the L dependence of the solutions AS is more heterogeneous since the

sign of the mass term m2
5,SR2 in the field equation can be either negative, zero, or positive

(cf. eq. (4.8)). These three cases generate qualitatively different solution behaviors. The
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positive sign corresponds to L > 2 and is associated with irrelevant gauge theory operators

according to the renormalization group (RG) classification. The solutions for L > 2 will

turn out to be qualitatively similar to those in the baryon sector. The massless case

m2
5,SR2 = 0 corresponds to L = 2 and to a marginal operator in the RG sense. The

duals of the lowest orbital excitations L = 0, 1, finally, represent relevant operators and

are tachyons9 with m2
5,SR2 = −4,−3. In the following, we will discuss these three cases in

turn.

L = 0, 1: due to their tachyonic nature, the L = 0, 1 solutions are perhaps the most inter-

esting ones. The negative mass term together with the specific inhomogeneity generated

by the potential (3.2) forces these solutions to develop a singularity at finite z = zm, which

restricts the spacetime to an AdS5 slice.10 The position and sign of these singularities

depends on the second boundary condition for AS (z). At z = 0 this boundary condition

may e.g. be imposed11 on A′′′
S (0) for L 6= 0 and on A′′′′′

S (0) for L = 0. The singularities

have positive (negative) sign, i.e. A → ±∞, if A′′′
S (0) (or A′′′′′

S (0) for L = 0) is chosen

larger (smaller) than a critical value.

Independently of the sign of the singularities, furthermore, the warp factor

R2

z2
e2AS(z) ≥ c (zm) ≥ 0 (4.15)

(c (zm) = R2 exp [2AS (zm)] /z2
m = 0 for negative singularities) of all solutions remains

bounded from below for all z up to zm where the dual spacetime ends. The above behavior

provides a sufficient confinement criterion in the five-dimensional holographic description.

The Wilson loop [17] then shows an area law (since the strings are localized at zm) and

the gauge theory develops the expected mass gap Mmin ≥ z−1
m [18]. In fact, the hard-wall

horizon (2.8) may be considered as a simple model for this type of behavior. It corresponds

to the development of an abrupt negative singularity of A at zm.

The origin and locus of the negative singularities can be understood quantitatively by

obtaining a series solution for z ≪
√

2λ−1 in the form

AS (z) =
1

2
ln

[

1 +

∞
∑

n=1

An (L)

(

λ2z2

2

)n
]

(4.16)

which already incorporates both boundary conditions, i.e. A (0) = 0 and a second one

to become explicit below. The coefficients An may be calculated by inserting the expan-

9Scalar AdS5 tachyons with masses satisfying the Breitenlohner-Freedman bound m2R2 ≥ −d2/4 (which

includes the cases we encounter here for d = 4) do not cause instabilities, as has been known for some

time [43].
10In our case this is a geometric consequence of requiring the holographic dual to generate potentials

which exhibit the linear spectral trajectories (3.7), (3.8). Alternatively, additional branes may restrict the

fifth dimension in the IR [44].
11The analysis of the linearized approximation to eq. (4.14) in appendix A shows that AS (0) = 0 auto-

matically implies A′

S (0) = 0, A′′

S (0) = 2Lλ2/
`

L2 − 7
´

for L 6= 0 as well as A′

S (0) = A′′

S (0) = A′′′

S (0) = 0,

A′′′′

S (0) = −3λ4 for L = 0, as a consequence of the inhomogeneity.
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sion (4.16) into eq. (4.14). The first three are (for L 6= 2)

A1 (L) =
4L

L2 − 7
, A2 (L) =

4

L2 − 4

(

1 − 9

4
A2

1

)

, A3 (L) =
−12

L2 + 5
A3

1. (4.17)

In general, the inhomogeneity of eq. (4.14) determines the leading small-z behavior of the

AS , as revealed by the solutions (A.2) - (A.4) of the linearized equation given in appendix A.

For L = 0, 1, in particular, it forces the z dependence inside the logarithm to start out

quadratically and yields

AS,L=0,1 (z) =
1

2
ln

[

1 + A1
λ2z2

2
+ . . . + O

(

λ6z6
)

]

z2≪2λ−2

−→ L

L2 − 7
λ2z2 +

1

16

(

2A2 − A2
1

)

λ4z4 + O
(

λ6z6
)

. (4.18)

(The second boundary condition can be read off from this expression.) Equation (4.18) also

implies that the solutions with L = 0, 1 turn negative for z & 0. At large z, on the other

hand, the inhomogeneity rises ∝ z4 and demands the modulus of AS to grow as well. At

some finite zm the nonlinearity ∝
(

e2A − 1
)

in eq. (4.14) will therefore become too negative

(for AS > 0 and L < 2) to be counterbalanced by the derivative terms. To avoid conflict

with the increasingly positive inhomogeneity, the solution then develops a singularity at

zm. As already mentioned, the sign of the singularity depends on the second boundary

condition. A negative singularity occurs if the slope of AS near z = 0 is smaller than a

critical value such that the argument of the logarithm in eq. (4.16) eventually reaches zero.

This singularity is quantitatively reproduced by the series solution (4.16) as long as zm lies

inside its range of validity.

If the slope of AS at small z exceeds the critical value, on the other hand, the zero

in the argument of the logarithm is avoided. Instead, the argument stays positive with

increasing z, passes through a minimum and starts to increase until it reaches a positive

pole singularity at finite zm. Singularities of this type lie outside the validity range of the

expansion (4.16) and imply that the non-conformal part of the warp factor approaches a

pole singularity as well. For L = 0, e.g., it takes the explicit form

e2AS(z) ∼ 12

λ2 (z − zm)2
. (4.19)

L = 2: for L = 2 the mass term in eq. (4.14), and hence the strongest nonlinearity,

vanishes. The initial curvature A′′
S,L=2 (0) = −4λ2/3 is negative and again set by the

inhomogeneity (cf. eq. (A.3)). Consequently, the solution can still develop a negative

singularity if its slope close to z = 0 remains below a critical value. For larger slopes the

solutions turn positive and are nonsingular. Hence L = 2 corresponds to the intermediate

case in which the solution space contains both singular solutions in which confinement

manifests itself by compactifying the fifth dimension (similar to the L = 0, 1 cases), and

regular solutions analogous to those encountered for L > 2 (see below). Of course, the

ensuing potential (3.2) is (up to zm) identical in both cases.
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Figure 1: Typical solutions AS (z) for L = 0 (full line, negative sign of singularity selected), L = 1

(dotted line, positive sign of singularity selected), L = 2 (short-dashed, absence of singularity

selected) and L = 3 (long-dashed). Note that the dual eigenmodes have significant support only

for z <
√

2λ−1.

L > 2: for all L > 2 the main nonlinearity in eq. (4.14) has a positive sign. Moreover,

at z = 0 the solutions start out with positive curvature A′′
S (0) = 2Lλ2/

(

L2 − 7
)

(again

dictated by the inhomogeneity, as can be seen from their linearized counterparts (A.4)).

In fact, the AS,L>2 and the corresponding warp factors remain positive and nonsingular at

all z. Typical numerical solutions for AS with L = 0, 1, 2 and 3 are displayed in figure 1.

By construction, any background metric of the form (2.1), with AS a solution of

eq. (4.14), reproduces the potential (3.2) for all existing z. If the background space ends

in z direction at zm, however, the potential (3.2) must end there, too. This does not affect

the (low-lying) spectrum as long as zm ≫ λ−1. Hence for our purpose of maintaining the

trajectory (3.7) even when L = 0, 1 we choose the second boundary condition such that

zm becomes as large as needed.12 This selects the singularities of positive sign and implies

that the corresponding field modes automatically satisfy Dirichlet (or Neumann) boundary

conditions at zm:

fS,L=0,1 (zm) =
[

λzme−AS(zm)
]3/2

ϕL=0,1 (zm) = 0. (4.20)

Even for radial excitations well beyond those currently experimentally accessible, the L =

0, 1 part of the spectrum (3.7) remains therefore unaffected. (Note the Gaussian suppression

of the eigenmodes (3.4) for z2
m ≫ 2λ−2.) We will elaborate on this issue in section 5.1.

(Recall for comparison that the much slower decay of the string mode solutions in pure

AdS5 (Bessel functions) requires that boundary conditions at the hard IR wall have to be

imposed by hand. This strongly modifies the spectrum — the masses become proportional

to the zeros of Bessel functions [7] — and generates the incorrect M2 ∝ N2, L2 behavior

which is typical for infinite square well or bag potentials.)

12We have found numerical solutions of eq. (4.14) with zm > 6λ−1 (for L = 0).
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4.3 Vector meson sector

The equation for the non-conformal warp factor in the spin-1 meson sector,

−z2A′′ +
3

2
z2A′2 − 3zA′ +

2

3

(

L2 − 1
) (

e2A − 1
)

− 2

3
λ2z2

(

λ2z2 + 2L
)

= 0, (4.21)

is obtained by setting the meson potential (3.2) equal to the general-A potential (4.6).

This equation differs from its counterpart (4.14) in the spin-0 sector only by the sign of

the A′′ term and by the replacement
(

L2 − 4
)

→
(

L2 − 1
)

in the coefficient of the main

nonlinearity. The inhomogeneity and its L dependence remain identical since they originate

from the same bulk potential (3.2) in both cases. Hence the analysis of the solution space

is similar to that of section 4.2 and will not be repeated in detail. Instead, we will just

highlight qualitative differences in the solution behavior and discuss the numerical solutions

of eq. (4.21) and their implications.

The main differences between the solutions of eqs. (4.14) and (4.21) can be rather

directly traced to the two differences in the equations mentioned above. The modified

coefficient of the exponential term reflects the fact that in the vector meson sector only

L = 0 corresponds to a tachyonic mode while the L = 1 mode is massless and all L > 1

modes are massive (cf. eq. (4.9)). This is a consequence of the additional unit of spin carried

by the vector mesons. Hence the qualitative changes in the solution behavior occur around

L = 1 (instead of at L = 2). The sign flip of the second-derivative term, furthermore, leads

to changes in the sign of the solutions AV (z) and in the development of singularities. Part

of these modifications are determined by the solution behavior at small z which, as in the

spin-0 case, can be obtained from the solutions to the linearized version of eq. (4.21) as

derived in appendix A.

The above qualitative expectations are corroborated by the numerical solutions (again

subject to the conformal boundary condition AV (0) = 0). Their perhaps most important

novel feature is that the second boundary condition can be adapted to generate a common

qualitative behavior for all L which is singularity-free. More specifically, every regular

solution turns negative towards larger z where it decreases monotonically. For L > 2

the solutions start out with positive slope at z = 0 (cf. eq. (A.8)) which implies that the

decrease can set in only after passing through a shallow, positive maximum at finite z.

While the L = 0 solution (associated with the tachyon mode) stays regular for all choices

of the second boundary condition, however, for L > 0 one has the additional possibility

of solutions which remain positive towards larger z and develop a singularity at z = zm

similar to those encountered in the spin-0 sector for L = 0, 1. A set of typical solutions

AV (z) for L = 0, . . . , 3 is plotted in figure 2.

To summarize, in the vector meson channel the dual manifestation of confinement

in terms of a dynamically compactified fifth dimension is not a necessity but rather an

option for the higher orbital excitations (with L > 1). In contrast to the scalar sector,

furthermore, the underlying singularities are not associated with tachyonic modes.

We conclude this section by noting that the existence of simple gravity duals which

reproduce the linear trajectories (1.1), as constructed above, provides additional support

for the AdS/QCD program. Moreover, it establishes the basis for calculating gauge the-
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Figure 2: Typical solutions AV (z) for L = 0 (full line), L = 1 (dotted line), L = 2 (short-dashed,

absence of singularity selected) and L = 3 (long-dashed, singularity selected). Recall that the dual

eigenmodes have significant support only for z <
√

2λ−1.

ory correlation functions and observables from the dual mode solutions (3.4)–(3.6) on the

basis of the AdS/CFT dictionary [2]. Close to the AdS boundary, all metrics found above

have the same qualitative small-z behavior with a non-conformal warp factor of the form

exp
(

cz2
)

(except for scalar mesons with L = 0 and vector mesons with L = 2), as deter-

mined by the inhomogeneous terms in eqs. (4.14), (4.11) and hence directly induced by

the underlying bulk potentials. This behavior suggests the formation of a two-dimensional

(nonlocal) gluon condensate [45] and indicates its relevance for linear confinement (cf. sec-

tion 5.4). (For L = 0 mesons the standard four-dimensional gluon condensate seems to

dominate, on the other hand, which should be compared to the operator product expan-

sion with renormalon-type corrections for the corresponding QCD correlators.) At large L,

furthermore, the leading z dependence of the mesonic and baryonic warp factors becomes

identical. Finally, an IR cutoff dual to ΛQCD for the fifth dimension emerges as a necessary

requirement for weakly orbitally (i.e. L = 0, 1) excited scalar mesons and as a possibility

for L > 1 vector mesons. In our framework this compactification of the fifth dimension

occurs dynamically.

5. Discussion of the resulting holographic duals

In the following section we elaborate on several important properties of the IR-deformed

gravity backgrounds found above and discuss their physical significance.

5.1 Singularities in the meson sector and linear confinement

In several recent holographic QCD models, the asymptotically free and hence almost con-

formal region (with at most weakly deformed AdS metric) is assumed to extend down to

energies z−1 of the order of the QCD scale. It gets broken only in the infrared, by a rather

abrupt onset of nonperturbative effects including condensates and confinement.
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This scenario is indeed borne out dynamically by our results especially for the low-

est (i.e. L = 0, 1) orbital spin-0 meson excitations. These are exactly the meson modes

accessible in weakly curved dual supergravity backgrounds. As shown above, for them to

lie on linear trajectories requires a singular metric of the type [17, 18] emerging in holo-

graphic duals of confining theories. In these cases the onset of confinement indeed occurs

rather sudden, although not as sudden as in the extreme hard wall case (2.8). We have

already traced the origin of these singularities to the tachyonic nature of the corresponding

dual modes.13 In the vector meson sector, in contrast, singular metrics are possible but

not mandatory (depending on the choice of a boundary condition) for orbitally excited

resonances, and they are not tachyon-induced.

Physically, it seems that no (L = 0) or only a small (L = 1) centrifugal barrier allows

the corresponding spin-0 meson states to probe different aspects of the IR region and hence

to feel a more sudden onset of confinement, in particular at large N . The location of the

singularities, however, is set by the inverse mass scale in the second boundary condition and

can therefore be put at zm ≫ λ−1 large enough not to significantly alter the low-lying part

of the spectra. Furthermore, semiclassical arguments indicate that highly excited hadrons

generally become larger and therefore should be able to explore more of the IR region as

well. This may explain why the vector meson metric can become singular for L > 1.

The possibility to set zm ≫ λ−1 implies, in particular, that one could choose extensions

of the metric into the region z ∈ [zm − ε,∞] which yield the same low-lying spectra and

wave functions (cf. eq. (4.20)) without any singularities. In the intermediate case of spin-0

mesons with L = 0 the choice between singular and regular metrics exists even inside the

solution space of eq. (4.14). For scalar meson excitations with L > 2, vector mesons under

suitable boundary conditions and all baryons, finally, confinement does not manifest itself

in metric singularities at all.

Nevertheless, all higher meson and all baryon excitations are found to lie on the linear

trajectories14 (3.7) and (3.8). The combination of these results may reflect the fact that the

wave functions of light hadrons seem to be rather weakly affected by the linear confinement

force. Indeed, several successful models for low-lying hadrons (e.g. models of Skyrme-

type [37] and the instanton-based chiral quark model [49]) do not implement confinement

at all since the mean separation among colored constituents appears to be too small for

confinement effects to become relevant.

As noted in ref. [7], the abrupt hard wall singularity of the metric (2.8) — and the

IR boundary conditions it requires — resemble those of an MIT bag model with a sharp

surface [50]. In our case the singularities develop more gradually. The analogous bags

therefore have smooth transition regions as they emerge dynamically in soliton bag models

of Lee-Friedberg [51] or color-dielectric [52] types. Such soliton bags become confining by

means of a space-dependent color dielectric function which induces singular couplings to

13It may be tempting to speculate about potential relations between these tachyon-induced singularities

and closed string tachyon condensation [46] in the bulk, which is expected to be dual to confinement on the

gauge theory side (see also refs. [47, 48]).
14The holographic models of refs. [11, 19] also realize linear meson trajectories with a non-singular metric,

but they contain an additional (regular) dilaton field.
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vacuum fields [53]. This suggests that the IR deformations of the dual gravity background

found above encode information on the color-dielectric QCD vacuum structure.

String breaking due to light quark production is expected to stop the linear rise of the

QCD confinement potential at large distances and hence to bend the linear hadron trajec-

tories at sufficiently high excitation levels. Although such effects are not yet visible in the

experimentally accessible part of the hadron spectrum, string breaking has recently been

confirmed on the lattice [54]. In our model, however, the linearity of the spectra (3.7), (3.8)

continues up to arbitrarily high excitation quanta (except for spin-0 mesons in L = 0, 1

states with N → ∞, due to the finite z effects discussed above). This indicates that string

breaking effects are absent in our holographic dual, as expected in the large-Nc limit (where

Nc is the number of colors) or the associated weak coupling approximation on the gravity

side.

A simple way to account for string breaking effects by hand would be to modify the

solutions A at z > zm − ε such that the potential levels off. As already alluded to, for

(λzm)2 ≫ 1 any reasonably smooth deformation of A at large z may in fact be implemented

with practically no impact on the low-lying part of wavefunctions and spectra. In this way

one could for example remove the singularities altogether. Not surprisingly, this also implies

that the generation of the linear trajectories (1.1) does not fully constrain the IR behavior

of the gravity background. Together with the second boundary condition in the meson

sector, the remaining freedom could be used to implement a more comprehensive set of

QCD observables.

5.2 L dependence

The IR deformations of the AdS5 metric obtained from the solutions of eqs. (4.11), (4.14)

and (4.21) are necessarily L dependent. This L dependence enters through the poten-

tials (3.2), (3.3) which give rise to the inhomogeneities of the differential equations for

AS,V,B, and more universally through their counterparts (4.5)–(4.7) in the IR deformed

background. Its ultimate source is therefore the L-dependent twist dimension of the con-

sidered hadron interpolators, imposed via eqs. (4.8)–(4.10), and its main effects are inde-

pendent of the specific choice for the heuristic potentials or the replacement rule (3.1). A

somewhat analogous hadron dependence of a dual background has been found in ref. [20],

where vector and axial vector mesons feel a different metric, and would enter several other

holographic models if observables in the whole hadron spectrum were to be reproduced.

A natural source for the L dependence arises in our approach from the identifica-

tion of orbital hadron excitations as stringy quantum fluctuations about the AdS back-

ground [7, 16]. Indeed, such L dependent fluctuations may deform the AdS background

metric in an L dependent fashion. In the simpler case of two-dimensional quantum gravity,

fluctuation-induced deformations of a background metric (essentially AdS2) were recently

found explicitly [55]. In our case, the back-reaction of the metric to a fluctuation dual to a

given orbital excitation could conceivably lead to analogous, L dependent deformations, as

found in our solutions AS,V,B (z). Although the different orbital excitations feel a different

total metric, however, the overall conformal symmetry breaking scale λ remains (almost)
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hadron independent. This is a consequence of its relation (3.9) to the almost universal

slope of all hadron trajectories, which we will discuss quantitatively in section 6.

The identification of orbital excitations as duals of metric fluctuations sets their holo-

graphic origin apart from that of the radial (i.e. N) excitations. This becomes manifest

in the fact that our metric acquires no N dependence while even more sophisticated IR

deformations would necessarily be L dependent since each orbitally excited hadron state

is created by a different interpolator. Via back-reactions similar to those considered in

refs. [48, 57] this L dependence may carry over to additional background fields of stringy

origin as well. The relative weakness of the warp factors’ L dependence in the physically

dominant region z <
√

2λ−1 and for larger L (where it becomes identical in the meson and

baryon sectors) may be another indication for their fluctuation-induced origin.

Additional support for the above interpretation of the angular-momentum dependence

in our background arises from an observation in ref. [11]. The latter asserts that for on-

shell gauge theory properties which are described by the quadratic part of the dual string

action, like the trajectories (1.1), the effect of higher derivative terms (including those

related to orbital angular momentum operators, cf. section 2) can be essentially reproduced

by the standard quadratic terms — to which we restrict ourselves here — in a modified

gravity background. The modifications will depend, in particular, on the hadronic angular

momentum carried by the dual modes, as manifested in our case in the solutions AS,V,B.

Pursuing the above line of reasoning farther, we recall that in the holographic model

based on the hard-wall metric (2.8) quantum fluctuations corresponding to orbital exci-

tations are (at least in the conformal regime at small z) represented by an L dependent

effective mass for the bulk string modes. Our derivation of the dual gravity backgrounds

suggests a generalization of this interpretation. By allowing the effective masses to change

with resolution r = R2/z outside of the conformal regime (i.e. for z > 0, as via the re-

placement (3.1)) one may be describing the quantum fluctuations of the metric and their

potentially deforming back-reaction in more detail, and hence obtain a more accurate de-

scription of IR properties (including the linear hadron trajectories (1.1)) on the gauge

theory side.

5.3 Background field content and underlying dynamics

The construction of our background geometry raises the question how it may be related to

an underlying string theory. One could start to gain insight into this matter by examining,

for example, whether the differential equations (4.11), (4.14) and (4.21) for the metric can

be at least approximately cast into the form of (potentially higher-dimensional) Einstein

equations. Such issues are beyond the scope of the present paper, however, where we focus

on general principles, symmetries and experimental data to constrain the holographic dual

in bottom-up fashion but leave the underlying dynamics at least a priori undetermined.

In the remainder of this section we will therefore only mention a few qualitative aspects

of the dynamics expected to govern the dual background and summarize the rationale for

restricting our construction to the metric.

As stated in the introduction, the present knowledge of string theory in strongly curved

spacetimes does not provide ab initio insight into the background field composition and
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dynamics of the QCD dual. (Guidance from the supergravity approximation, in particu-

lar, is limited even at large Nc: it would predict a mass gap far smaller than the string

tension beyond which linear trajectories can emerge, for example, in conflict with QCD

phenomenology [11].) Nevertheless, several approximate, QCD-like duals, partly including

fundamental flavor as mentioned in sections 1 and 2, have recently been obtained from

brane constructions in which the metric and other background fields are solutions of clas-

sical field equations. Other dual models were derived by solving simple, string-inspired

scalar and Einstein equations [48, 57] and used to get an idea of the impact of QCD con-

densates on the background. These models show, in particular, that such back-reactions

can generate confining IR cutoffs in the fifth dimension similar to those encountered in our

approach.

Our exclusive reliance on the dual background metric, finally, was guided by the di-

mensional power-counting argument of section 4, the possibility to represent the impact

of additional background fields on the resonance masses by deformations of the metric

(cf. section 5.2), and by an Occam-razor type preference for the minimal and hence most

efficient background required to reach our objectives. Nevertheless, experience from brane

models as discussed above suggests that a more comprehensive and detailed approximation

to the QCD dual should contain additional background fields. As pointed out in ref. [11],

for example, one may expect a background including tachyon and dilaton fields if the

dual confinement mechanism has its origin in closed-string tachyon condensation (see also

ref. [48]).

5.4 Comparison with other confining holographic models

In the following we will briefly compare our holographic model to a few related approaches

which also contain dual representations of linear confinement and linear trajectories in the

hadron spectrum. As already mentioned, it turns out to be a nontrivial task to reproduce

linear trajectories with approximately universal slopes not only in the meson but also in

the baryon channels. In fact, our approach seems to be the first which accomplishes this.

Hence our comparisons below have to remain restricted to the meson sector.

Linear “meson” trajectories in more or less QCD-like gauge theories were e.g. found

in refs. [23, 42]. A recent implementation of linear trajectories for both radial and spin

excitations of the rho meson into the AdS/QCD framework [11] induces conformal sym-

metry breaking mainly by a dilaton background field. In the simplest case a dilaton of

the form Φ (z) ∝ z2 is added to the pure AdS metric and hence is exclusively responsible

for the non-conformal IR behavior. (Essentially the same term was argued to arise from a

dual magnetic condensate (which plays the role of a Higgs field) in the partition function

of a QCD instanton ensemble when promoted into the bulk [56].) Although this approach

works well in the (vector) meson sector, we have already noted that such dilaton effects

do not manifest themselves in the baryon spectrum since they can be absorbed into the

eigenmodes and leave the AdS/CFT boundary condition unchanged. An interesting obser-

vation of ref. [11] is that the exponent of the warp factor should not contain contributions

growing as z2 for z → ∞, in order to have spin-independent slopes of the radial rho meson
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excitation trajectories. Our solutions AS,V,B grow logarithmically with z for large15 z and

are therefore consistent with this condition (while the model of refs. [19, 42] is not, see

below).

In other recent work, scalar bulk fields dual to the gluon and bilinear quark condensate

operators have been shown to generate — by their back-reaction on the gravity background

— a confining restriction of the metric to a deformed AdS slice [48, 57]. Indications for the

potential role of the two-dimensional QCD condensate [45] in the confinement mechanism

arise in these frameworks as well. As already mentioned, the non-conformal behavior of our

metric towards small z, induced by the confinement-generating modifications of the string

mode potentials, may similarly be a reflection of the non-local dimension-two condensate.

This suggest a more general analysis of the information on QCD condensates and more

specific IR degrees of freedom (e.g. topological ones related to instantons, monopoles or

center vortices) [58] which is encoded in our background metric.

The qualitative small-z behavior exp
(

cz2
)

of our solutions for the non-conformal warp

factors is identical to that proposed in refs. [19, 42] where it has been shown to embody,

together with a constant dilaton, a linearly growing heavy-quark potential and a linear

(mesonic) Regge trajectory [19, 42]. The value of c was estimated to be c ∼ −0.9 GeV2 (in

a metric with Lorentzian signature) which is in the same ballpark as ours for intermediate L.

Indeed, anticipating the relation (6.5) between λ and ΛQCD to be established in section 6,

our warp factor implies e.g. cS,L=2 ≃ −0.7 GeV2. Our values for cB in the baryon sector are

positive, however, which may suggest some differences in the dual confinement mechanisms

for vector mesons and baryons.

6. Phenomenological implications

In the following section we proceed to the quantitative analysis of our holographic dual and

confront the predicted mass spectra (3.7), (3.8) for the light hadrons with experimental

data. Recent reviews of excited hadrons, their symmetry structure, parity doubling etc.

can be found in refs. [59].

We start by determining the conformal symmetry breaking scale λ from data for the

slope W = 4λ2 of the trajectories (1.1). Fits to the experimental meson spectra yield

W = (1.25± 0.15) GeV2 [27] and W = (1.14± 0.013) GeV2 [28]. These values allow for an

immediate check of our relation (3.10) which predicts the rho meson mass as a function of

its trajectory slope, i.e.

Mρ =

√

W

2
. (6.1)

The above empirical results for W imply Mρ = 0.79 GeV or Mρ = 0.76 GeV, respectively,

which are both consistent with the experimental value Mρ = 0.7755 ± 0.0004 GeV [60].

Since the latter is close to the mean of the slope fit results, we choose the experimental rho

mass to set the scale of the deformed gravity background, i.e.

λ =

√

W

4
=

Mρ√
2

= 0.55 GeV. (6.2)

15Except if the large-z region is cut off by a singularity, of course
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Figure 3: Experimental meson mass spectrum from ref. [60] and the predicted trajectory for

W = 2M2
ρ ≃ 1.01 GeV2.

The corresponding value W = 4λ2 = 1.21 GeV2 fixes the slope of our linear meson trajec-

tory which is compared to the experimental meson resonance spectrum (for quark-antiquark

states) in figure 3.

The clustering of radial and orbital excitations is clearly visible, and even the highest

radial excitations f2(2300) and f2(2340) lie squarely on the linear trajectory. The pion

ground state, set apart by its approximate Goldstone boson nature, does not fit into the

overall pattern predicted by the dual string modes. This problem is expected. It was

already encountered in ref. [7] and is caused by the lack of chiral symmetry and its breaking

in our approximate holographic dual. For the same reasons, qualitative models for the light-

front square mass operator in the mesonic valence quark sector [61] (which reproduce the

radial excitation trajectory) need a strong additional short-range attraction in the spin-0

channel to reproduce the π-ρ mass splitting (for L = 0). Since the dual string modes are

related to the valence components of the light-front wave function (with z playing the role

of a relative coordinate) [21], the impact of such interactions is accessible in our approach.

The empirical slope of the ∆ trajectory (including the nucleon resonances in the 48

representation of SU(4)) is W = (1.081 ± 0.035) GeV2 [26]. As in the meson sector, our

relation (3.11) turns this value into a prediction for the ∆ ground state mass,

M∆ =

√

3W

2
= 1.27 GeV, (6.3)

which compares well with the experimental value M∆ = 1.232 GeV. This suggests to use
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(1910)
(1905)

(2420)

Figure 4: Experimental Delta isobar mass spectrum from ref. [60] and the predicted trajectory

for S = 3/2 (in the 48 representation of SU(4)) with W = 2M2
∆

/3 ≃ 1.01 GeV2.

the experimental mass of the ∆ isobar for an alternative determination of the scale

λ =
M∆√

6
= 0.50 GeV (6.4)

in the baryon sector. The value (6.4) differs by less than 10% from that based on the

experimental rho mass, eq. (6.2). This confirms the approximate universality of λ and of

the associated slopes W = 4λ2 in the meson and baryon sectors.

The resulting ∆ isobar trajectory, together with the empirical square masses of the

radial and orbital resonances, is shown in figure 4. The first radial excitations, ∆(1600)3
2
+

(with L = 0) and ∆(1930)5
2

−
(with L = 1) are degenerate with states carrying one or two

units of angular momentum, respectively. The parity doublets ∆(1600)3
2

+
, ∆(1700)3

2

−
and

∆(1905)5
2

+
, ∆(1930)5

2

−
, furthermore, are states which differ by one radial and one orbital

excitation quantum such that N + L is preserved.

Finally, we turn to the nucleon and its excitations. As noted in ref. [26], the trajectory

of the nucleon resonances in the 28 representation of SU(4) (including the nucleon itself)

lies below that for the 48 representation. This behavior can be accommodated by our

covariant16 framework with a somewhat smaller value of λ = 0.47 GeV which may e.g. be

due to hyperfine interactions. The resulting trajectory indeed fits the nucleon resonances

in the 28 representation well and is shown as a solid line in figure 5. The experimental

16Note that the identification of the not separately Lorentz-invariant orbital angular momentum L requires

us to select a particular frame, which underlies the interpretation of our interpolators (cf. section 2).

– 23 –



J
H
E
P
0
7
(
2
0
0
7
)
0
7
7

N(938)

N(1700)
N(1675)
N(1650)

N(1535)
N(1520)
N*(1440)

N(1720)
N*(1710)
N(1680)

N(2250)
N(2190)

N(2220)
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Figure 5: Experimental nucleon mass spectrum from ref. [60] and the predicted trajectories for

S = 1/2 with W ≃ 0.9 GeV2 (solid line) and for S = 3/2 with W = 2M2
∆

/3 ≃ 1.01 GeV2 (dashed

line).

value of the nucleon mass lies below the value MN = 1.16 GeV on the trajectory, however.

This may again be related to chiral symmetry breaking effects and implies, in any case,

that the resulting nucleon delta splitting vanishes. Since the latter is an O (1/Nc) effect

(where Nc is the number of colors), this result is consistent with the large-Nc limit, i.e.

the weak string coupling limit which underlies all known top-down holographic duals. The

trajectory of figure 4 is included as a dashed line in figure 5 and seen to fit the nucleon

resonances in the 48 representation, as anticipated.

Our holographic results for the at present experimentally accessible orbitally excited

nucleon states are generally close to those of ref. [7] (which were based on the hard IR

wall metric (2.8)) because at moderate N + L the difference between linear and quadratic

trajectories is rather small. In addition, we predict the radially excited states, i.e. the Roper

resonance N(1440) and the second radially excitation N(1710), which is almost degenerate

with the L = 2 states N(1680) and N(1720). Our results for nucleons with internal spin

3/2 lie approximately on the ∆ trajectory (dashed line), as already mentioned. The parity

doubling of baryon states with fixed total spin, differing by one unit of angular momentum

and one internal spin or radial excitation quantum, emerges naturally in our approach.

The slope W of our trajectories is related to the QCD scale. As a consequence of

confinement, the Gaussian suppression factor exp
[

− (W/8) z2
]

prevents the dual string

modes (3.4) - (3.6) from extending significantly beyond distances zm ∼
√

8/W into the fifth

dimension. Similar confinement effects are often modelled by the hard IR wall metric (2.8)
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with zm ∼ Λ−1
QCD, as discussed in section 4. Hence we approximately identify

ΛQCD ≃
√

W

8
=

λ√
2
≃ 0.35 GeV. (6.5)

The numerical estimate in eq. (6.5) is based on the phenomenological slopes of about

1 GeV2 and indeed close to the empirical value ΛQCD ≃ 0.33 GeV (at hadronic scales

with three active flavors) [60]. Finally, we recall that the string tension resulting from the

semiclassical treatment of simple, relativistically rotating string models [22], i.e.

σ =
W

2π
≃ 0.88

GeV

fm
, (6.6)

is consistent with standard values as well.

7. Summary and conclusions

We have shown how a salient empirical pattern in the light hadron spectrum, namely the

combination of both radial and orbital excitations into linear trajectories of approximately

universal slope, can be reproduced with good accuracy by a rather minimal version of

holographic QCD. Our approximate holographic dual relies exclusively on IR deformations

of the AdS metric, governed by one free mass scale proportional to ΛQCD, and generates the

mass gap expected from confining gauge theories. Moreover, it provides the first example

of a gravity dual which is able to reproduce linear trajectories in the baryon sector as well.

The resulting light hadron spectra are in good overall agreement with the available

experimental data for both meson and baryon masses. Discrepancies between the radial

and orbital resonance masses in the hard-wall model are resolved and the experimentally

established, approximately universal slope of the trajectories emerges naturally. Moreover,

new relations between the ρ meson and ∆ isobar ground state masses and the slopes of

their respective trajectories are predicted. Since the linearity of all trajectories extends to

the lightest masses, however, they fail to reproduce the physical pion and nucleon ground

states. This is not unexpected because our approximate gravity dual in its present form

lacks information on chiral symmetry and residual interactions responsible e.g. for hyperfine

splittings.

Our holographic background was derived by reconstructing the dual mode dynamics

from spectral properties on the gauge theory side. The underlying strategy may be useful

for other applications as well. It consists of first finding the modifications of the AdS

string mode potentials which generate a desired gauge theory result, and to subsequently

construct the corresponding fields on the gravity side by equating the potentials induced

by a general background to their heuristic counterparts. As long as a dual background

exists, its derivation is then reduced to solving the resulting differential equations.

Above we have constructed the holographic duals for radial and orbital hadron trajec-

tories in a minimal way, i.e. by a non-conformal warp factor. A remarkable a posteriori

justification for this restriction is its sufficiency. More complex IR deformations and fur-

ther bulk fields would also introduce new parameters to be fixed by QCD phenomenology
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and hence lessen the predictivity of the dual description. In the baryon sector we were

able to derive the resulting IR deformations of the metric analytically. The lowest orbital

excitations of the spin-0 mesons, and depending on a boundary condition also the higher

orbital vector meson excitations, encounter a singular metric. This is a dual confinement

signature and results in a dynamical compactification of the fifth dimension, hence directly

linking linear trajectories (for not too high excitation levels) to linear quark confinement.

Despite the advantages of the minimal description, however, experience from super-

gravity and brane models suggests that a more comprehensive holographic dual may require

a more general form of the metric and additional background fields. The prospect of de-

riving those by our method deserves further investigation. Among the potentially useful

extensions and applications we mention the implementation of quark flavor and sponta-

neously broken chiral symmetry as well as the calculation of condensates, heavy-quark

potentials and light-front wave functions.
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A. Solutions of the linearized differential equations for the mesonic warp

factor

In this appendix we solve the linearized versions of the differential equations (4.14)

and (4.21) for the non-conformal mesonic warp factors. The results will be useful for

our analysis of the solution behavior of the full, nonlinear equations in section 4. It will

also be instructive to understand the differences in the solution behavior induced by tachy-

onic, massless and massive modes in this simplified setting, although the solutions of the

linearized equations do not develop finite-z singularities.

The linearization of the differential equation (4.14) for the spin-0 meson sector leads

to the (still inhomogeneous) equation

z2A′′ − 3zA′ +
4

3

(

L2 − 4
)

A − 2

3
λ2z2

(

λ2z2 + 2L
)

= 0 (A.1)

whose solutions provide approximations to those of the full equation in the regions where

A ≪ 1. As a consequence of the conformal boundary condition A (0) = 0, which turns

out to be an automatic property of all solutions which stay finite at z = 0, this condition

should hold in particular in the UV, i.e. for z close to zero.

The full solution space of the linear equation (A.1) can be constructed by Frobenius

expansion techniques (for the homogeneous part) and by guessing special solutions of the
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full, inhomogeneous equation or by deriving them with the help of Green function methods.

Either way, the general solution for L = 0, 1 (associated with the tachyonic string modes

in the bulk) is found to be

ĀS,L=0,1 (z) =
Lλ2z2

L2 − 7
+

λ4z4

2L2 − 8
+ c1 (λz)2+2

q

7−L2

3 + c2 (λz)2−2

q

7−L2

3 . (A.2)

This solution satisfies the initial condition Ā (0) = 0 only for c2 = 0. The remaining

irrational-power term is subleading at small z both for L = 0 and L = 1. For L = 2, the

general solution (induced by the massless string mode) is

ĀS,L=2 (z) = −2

3
λ2z2 − 1

24
(1 + c1) λ4z4 +

1

6
λ4z4 ln λz + c2 (A.3)

where the initial condition Ā (0) = 0 requires c2 = 0. For L > 2, finally, the particular

solution of the inhomogeneous equation is identical to that for L = 0, 1 while the general

solution of the homogeneous equation differs. Their sum,

ĀS,L>2 (z) =
Lλ2z2

L2 − 7
+

λ4z4

2L2 − 8

+ c1λ
2z2 cos

(

2

√

L2 − 7

3
ln λz

)

+ c2λ
2z2 sin

(

2

√

L2 − 7

3
ln λz

)

, (A.4)

is the general solution of equation (A.1) and satisfies the initial condition Ā (0) = 0 for

all (finite) values of c1,2. Note that for L = 0, 1 the coefficients of both λ2z2 and λ4z4

are negative, for L = 2 the coefficient of λ2z2 is negative and that of λ4z4 can be chosen

positive (so that ĀL=0 > 0 for larger z), and for L > 2 both coefficients are positive.

The analysis of the linearized version

−z2A′′ − 3zA′ +
4

3

(

L2 − 1
)

A − 2

3
λ2z2

(

λ2z2 + 2L
)

= 0 (A.5)

of equation (4.21) in the vector meson channel proceeds analogously. For L = 0 it yields

the general solution

ĀV,L=0 (z) = −2

7
λ2z2 − 1

38
λ4z4 + c1 (λz)−1 cos

(

ln λz√
3

)

+ c2 (λz)−1 sin

(

ln λz√
3

)

(A.6)

where ĀV,L=0 (0) = 0 demands c1 = c2 = 0. For L = 1 one finds

ĀV,L=1 (z) = −1

3
λ2z2 − 1

36
λ4z4 + c1

1

λ2z2
+ c2 (A.7)

where ĀV,L=1 (0) = 0 again requires c1 = c2 = 0. The solution for L > 1, finally, is

ĀV,L>1 (z) =
Lλ2z2

L2 − 7
+

λ4z4

2L2 − 38
+ c1 (λz)−1−

q

4L2
−1

3 + c2 (λz)−1+

q

4L2
−1

3 (A.8)

where ĀV,L>1 (0) = 0 demands c1 = 0 while c2 remains unconstrained. For L = 2 the

irrational power term provides the leading small-z behavior. The coefficient of the λ2z2

(λ4z4) term turns positive for L ≥ 3 (L ≥ 4).
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The inhomogeneities in eqs. (A.1) and (A.5) determine the small-z behavior of the so-

lutions (with the exception of ĀV,L=2). In our context, this has two pertinent consequences.

First, the leading small-z dependence is generally determined by the special solutions of the

inhomogeneous equation and therefore completely fixed, i.e. only the subleading small-z

behavior depends on the boundary conditions.

A second useful consequence of the inhomogeneities in eqs. (A.1) and (A.5) — which

are the same as those in eqs. (4.14) and (4.21) — is related to the fact that the leading

small-z behavior of the solutions to the full equations is identical to that of their linearized

counterparts. Hence at small z the modulus of all solutions with A (0) = 0 grows as λ2z2

(except for ĀS,L=0 and ĀV,L=2), partially with trigonometric or logarithmic corrections.
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